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Intel® Math Kernel Library (Intel® MKL)
Using Intel® MKL with Threaded Applications

Page Contents:
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when calling some Intel MKL routines (e.g. sgetrf).

® Using Threading with BLAS and LAPACK

® Setting the Number of Threads for OpenMP (OMP)

® Changing the Number of Processors for Threading During Runtime

® Can I use Intel MKL if I thread my application?

Memory Allocation MKL: Memory appears to be allocated and not released when calling
some Intel® MKL routines (e.g. sgetrf).

One of the advantages of using the IntelMKL is that it is mutithreaded using

OpenMP*. OpenMP" reqires buffers to perform some operations and allocates memory

even for single-processor systems and single-thread applications. This memory allocation
oceurs once the first time the OpenMP software is encountered in the program. This memory
allocation persists until the application terminates. In addition, the Windows" operating system
will allocate a stack equal to the main stack for every addtional thread created. so the amount
of memory that is automatically allocated will depend on the main stack, the OpenMP
allocations and the number of threads used.

Using Threading with BLAS and LAPACK

Intel MKL is threaded in a number of places: LAPACK (*GETRF, "POTRF. *GBTRF routines),
Level 3 BLAS, DFTs, and FFTs. Intel MKL uses OpenMP" threading software. There are
situations in which conflicts can exist that make the use of threads in Intel MKL problematic.
We list them here with recommendations for dealing with these. First, a brief discussion of why
the problem exists is appropriate.

If the user threads the program using OpenMP directives and uses the Intel® Compilers to
compile the program. Intel MKL and the user program will both use the same threading library.
Intel MKL tries to determine f it is in a paraliel region in the program, and it is. it does not
spread its operations over mutiple threads. But Intel MKL can be aware that it is in a parallel
region only if the threaded program and Intel MKL are using the same threading library. If the
user program is threaded by some other means, Intel MKL may operate in muttithreaded
mode and the computations may be corrupted. Here are several cases and our
recommendations:

® User threads the program using OS threads (pthreads on Linux*, Win32*
threads on Windows*). If more than one thread calls Intel MKL and the
function being called is threaded, it is important that threading in Intel MKL
be turned off. Set OMP_NUM_THREADS=1 in the environment.

® User threads the program using OpenMP directives and/or pragmas and
compiles the program using a compiler other than a compiler from Intel.
This is more problematic because setting OMP_NUM_THREADS in the
environment affects both the compiler’s threading library and the threading

library with Intel MKL. In this case, the safe approach is to set
OMP_NUM_THREADS=1.

Multiple programs are running on a multiple-CPU system. In cluster
applications, the parallel program can run separate instances of the
program on each processor. However, the threading software will see
multiple processors on the system even though each processor has a

separate process running on it. In this case OMP_NUM_THREADS should be

setto 1.

® If the variable OMP_NUM_THREADS environment variable is not set, then
the default number of threads will be assumed 1.

Setting the Number of Threads for OpenMP* (OMP)
The OpenMP* software responds to the environment variable OMP_NUM_THREADS:

® Windows*: Open the Environment panel of the System Properties box of
the Control Panel on Microsoft* Windows NT*, or it can be set in the shell
the program is running in with the command: set OMP_NUM_THREADS=
<number of threads to use>.

® Linux*: To set and export the variableP "export OMP_NUM_THREADS=
<number of threads to use>".

Note: Setting the variable when running on Microsoft* Windows" 98 or Windows* Me is
meaningless. since multiprocessing is not supported.

Changing the Number of Processors for Threading During Runtime
It s not possible to change the number of processors during runtime using the emvironment
variable OMP_NUM_THREADS. You can call OpenMP API functions from your program to
change the number of threads during runtime. The following sample code demonstrates
changing the number of threads during runtime using the omp_set_num_threads() routine:

#include "omp "
#include "mkLh"

#include <stdio.h>

#define SIZE 1000

void main(int args. char "argvI{

double *a, *b. *c:
= new double [SIZE'SIZE]:

¢ = new double [SIZE"SIZE]:

double alpha=1, beta=1;
int m=SIZE, n=SIZE, k=SIZE, Ida=SIZE. Idb=SIZE, kdc=SIZE. i=0. j=0:
char transa="rl, transb="n;

c[i"SIZE+j]= (double)0:
}

}

chlas_dgemm(Cl c
m, n, k, alpha, a, Ida, b, idb, beta, c, Idc);

printf{"rowita\ten®);
for ( i=0:i<10:i++)

printf(*%c:\t% At AN, i, ali*SIZE], c[i'SIZE]):
}

omp_set_num_threads(1):

for( i=0: i<SIZE: i++){
for( j=0: [<SIZE; j++}

a[i"SIZE+jj= (double)(i+j):
bi*SIZE+jj= (double)(i*j):
c[i*SIZE+j]= (double)0:

) }

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans.

m. n, k, alpha, a, Ida, b, kib, beta, c. Idc):

printf(*rowitaltcin®);
for (=0 10i++)
printf{*%d:\t%fto%An", i, a[i"SIZE],
[i*SIZE]):
}

omp_set_num_threads(2):
for( i=0; i<SIZE: i++)
for( j=0: j<SIZE; j++){
a[i*SIZE+j)= (double)(i+j).
bi*SIZE+j}= (double)(i*j):
c[I"SIZE+j]= (double)0:
! }
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
m. n. k, alpha. a, Ida. b, kb, beta. c. Idc);

printf("rowitaltein’);
for (=0:i<10+)
Printf(*%d:t%At%AN", i, a[i*SIZE],
ofi*SIZE]):
}

delete [] a;
delete [] b:
delete [] c:

Can | use Intel MKL if | thread my application?

The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from muitiple
application threads can lead to confict (including incorrect answers or program failures), if the
calling library differs from the Intel MKL threading library.
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The Intel Math Kernel Library is designed and compied for thread safety so it can be called
from programs that are threaded. Calling Intel MKL routines that are threaded from multiple
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calling library differs from the Intel MKL threading library.
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Better Resource Abstraction: HARTS
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The Lithe Runtime
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Standard API/Callback Interface
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Enter/Exit a Scheduler

matmult () {

sched enter (OpenMP,;,,.) ;

sched exit();
}

time

sched enter () dynamically adds the new scheduler to the hierarchy.
sched exit ()dynamically removes a scheduler from the hierarchy. 60
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Putting it All Together
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Putting it All Together
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Lithe Context Support

* Basic user-level threading API
* Integrated directly to work well with harts

+ Can be extended by each library for
custom scheduler support

+ Callbacks into scheduler similar to hart
callbacks when operation performed

lithe_context_init()
lithe_context_cleanup()
lithe_context_run()
lithe_context_block()
lithe_context_unblock()
lithe_context_yield()

lithe_context_exit() 1



Real World Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)
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Real World Example

Sparse QR Factorization
(Tim Davis, Univ of Florida)
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Performance of SPQR on 16-Core machine

. Out-of-the-Box
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Performance of SPQR on 16-Core machine

Time (sec)

» o
w = N
Il

NN
ga o

N ONN
~ [0} 0
1 L Il

. Out-of-the-Box

. Manually Tuned

TBB=16 * OMP=16

landmark
TBB=11* OMP=8

16 -
14 -
12 -

10

o N A~ O @
|

AN N N N N AN

deltaX ESOC
TBB=3 « OMP=5 TBB=16 * OMP=5

Input Matrix

275
270
265
260
255
250 -
245
240
235 A

Rucci
TBB=16 * OMP=8

82

82



SPQR with Lithe

SPQR

Hardware

» Library interfaces remain the same
« Zero lines of high-level code changed (SPQR, MKL)
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SPQR with Lithe

SPQR

OpenMP, ;.

oS

Hardware

» Library interfaces remain the same
« Zero lines of high-level code changed (SPQR, MKL)
e Just link in Lithe runtime + Lithe versions of libraries (TBB, OpenMP)
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Performance of SPQR with Lithe

Time (sec)
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Lithe Enables Flexible Sharing of Resources
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Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP
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Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP

Give resources to TBB
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Lithe Enables Flexible Sharing of Resources

Give resources to OpenMP

Give resources to TBB

Manual tuning is stuck with 1 TBB/OMP config throughout run. 89



Flickr-Like Image Processing App Server

App Server
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Flickr-Like Image Processing App Server

App Server

Libprocess
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Requests

System Stack
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Flickr-Like Image Processing App Server

App Server

Graphics
Magick Image

Libprocess Resizin

Hardware
Requests

\

System Stack
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Performance of App Server

6
(16-Core Machine)
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Future Directions

* OS Support for Lithe
+ Akaros, Tessellation

* Preemptive Version of Lithe
* Direct support for MPI

* Integrate with GASNet
= Leverage lithe contexts

« Other ways to integrate with the
DEGAS stack?
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OS Support for Lithe

Lithe Runtime

% % % % User-Level




OS Support for Lithe
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OS Support for Lithe
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OS Support for Lithe

User-Level
Hart Impl
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Hart Impl
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Hardéware
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Conclusion

« Composability essential for parallel programming to
become widely adopted

functionality

resource management

« Parallel Ilbrarles need to share resources cooperatively
II

h
E
« Main Contributions
+ Harts: better resource model for parallel programming
+ Lithe: framework for using and sharing harts
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Questions?

7 P MKE

oS

|

Hardware

http://lithe.eecs.berkeley.edu
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Preemptive Lithe

 Three-level priority scheme
+ Same Priority > Cooperative
+ Higher priority can only preempt lower
+ Developer sets runtime priorities
+ Lithe runtime enforces priorities

* Current Lithe == Single Level @  real-Time Periodic




